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The electron distribution function in high-power, short-pulse, laser-produced plasmas is predicted to
be significantly non-Maxwellian during plasma heating. This directly affects radiation production and
ionized-state populations and alters the plasma heating rates and transport coefficients. Here we numeri-
cally solve a time-dependent Fokker-Planck equation to calculate electron energy distributions for a
near-critical-density selenium plasma irradiated by a 2 ps pulse width KrF laser with powers between
5X10'* and 7X 10'® Wcem ™2 Distributions are calculated locally, with plasma heating treated as in the
hot-spot model [K. G. Whitney and J. Davis, J. App. Phys. 45, 5294 (1974)], which focuses on a small,
stationary volume element heated by inverse bremsstrahlung and cooled by heat conduction and
electron-ion energy exchange. Inelastic electron-ion collisions, previously seen to have little influence on
the distribution, and bremsstrahlung cooling, which is negligible in magnitude, are not included. In-
tense, long-pulse inverse-bremsstrahlung heating produces non-Maxwellian distributions of a well-
known, depleted-tail form [A. B. Langdon, Phys. Rev. Lett. 44, 575 (1980)]. We show that in the present
case, because of short time scales and high plasma density, these do not accurately represent the electron
distribution. We obtain actual distributions both during and several picoseconds after the laser pulse
and determine the resulting effect on the laser absorption coefficient, heat conductivity, and electron-ion
coupling rate as a function of the peak intensity of the laser pulse. It is found that the non-Maxwellian
distribution results in greater heating; a reduction in the laser absorption coefficient is more than bal-
anced by the reduction in thermal conductivity. Electron-ion coupling is generally unaffected ( < 10%)
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by the non-Maxwellian distribution. These effects increase as a function of laser intensity.

PACS number(s): 52.50.Jm, 52.40.Nk, 52.25.Fi, 42.55.Vc

I. INTRODUCTION

Recent technological advances in short-pulse-width
( <10 ps), high-power ( > 10'* W cm ~2) lasers have shar-
pened interest in laser-plasma interactions [1,2]. Such ta-
bletop terawatt (T3) lasers open up new areas of high-field
physics and allow rapid heating of dense plasmas.
Short-pulse lasers have been proposed as drivers for
recombination x-ray lasers, using optical field ionization
in low-density plasmas [3] as well as collisional ionization
with rapid cooling in near-critical density plasmas [4], a
situation similar to that considered here. They have also
been used to irradiate solid-density targets and generate
bright, ultrafast x-ray pulses [5]. In all laser-plasma in-
teraction experiments, the form of the electron energy
distribution is very important. Radiation from the plas-
ma is directly affected by the shape of the distribution
function [6,7] and such radiation effects could be used to
infer the distribution function spectroscopically [8].
More importantly, because the collisional heating rate
and transport coefficients are determined largely by the
electron distribution, the electron temperatures and so
the x-ray emission or x-ray laser gain in dense plasmas
are dependent on the distribution shape. This too could
provide diagnostic information about plasma conditions;
for example, the quality of amplified spontaneous emis-
sion could signal the generation of nonequilibrium distri-
butions in an irradiated high-Z plasma [4].

The short pulse widths and high powers of T? lasers en-
sure that the electron distribution function will be non-
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Maxwellian both during and shortly after heating. For
strong inverse-bremsstrahlung heating at moderate densi-
ties on a nanosecond time scale, the distribution has been
analytically approximated [9,10], but for short pi-
cosecond pulse widths, for high densities, or when strong
turbulence is present, numerical solutions to the kinetic
equation are required. Here we present a model of laser
heating in a near-critical-density, highly ionized plasma.
Unlike other studies [8,11], we are primarily concerned
with the effect of non-Maxwellian distributions on the lo-
cal transport and hydrodynamics and not with the details
of spatial gradients; such an analysis for long-pulse heat-
ing is found in Ref. [10].

Our focus in this work is on the evolution of the isotro-
pic part of the electron distribution in energy (or velocity)
space, at or near the critical surface of the plasma, where
maximum laser absorption can occur. Energy balance in
this small region involves heating by resonant inverse
bremsstrahlung and cooling by electron conduction and
collisions with ions. These processes compete with iso-
tropizing electron-electron collisions to determine the
distribution function shape. The electron distribution is
calculated locally from the Fokker-Planck equation in ve-
locity space and the (possibly flux-limited) heat conduc-
tion is proportional to the local gradient in plasma tem-
perature as described by the hot-spot model [12], a hy-
drodynamic description of a plasma volume element in
which motion is ignored. This approximation is particu-
larly apt in this case because the relevant time scales, the
pulse width and ionization times, are so short. As we
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shall show, the kinetic model developed is term-by-term
consistent with, and thus extends, the hot-spot-model hy-
drodynamic results.

One important application for the results given here is
demonstrated in Ref. [4], where “hot-spot”-based calcu-
lations showed that, beyond laser intensities of a few
times 10> Wcm™2, a selenium plasma would ionize
quickly into the neonlike ionization stage, where large
population inversions between the J =0, 3p states and the
J=1, 3s states would be generated (gain coefficients
larger than, and possibly much larger than, 100 cm ™).
This earlier work studied the interaction of a small,
motionless plasma volume element near the critical sur-
face of a KrF laser with short (2 ps full width 1/e max-
imum) KrF heating pulses, which ranged in peak intensi-
ty from 5X 10 to 7X10'® Wem ™2, A set of rate equa-
tions, nonlinearly coupled to the hot-spot hydrodynamic
equations, was solved to determine the (nonequilibrium)
picosecond ionization response of the plasma. However,
the underlying assumption of these calculations was that
the electrons had a Maxwellian distribution, which pro-
duced the familiar set of rate equations and energy equa-
tions that are widely used to describe plasma dynamics.
It was noted that this assumption is incorrect, and in this
paper we will begin to quantify the degree to which it
breaks down as a function of laser intensity as well as to
assess the impact of short-pulse generated non-
Maxwellian electrons on the hydrodynamic equations.

This paper is structured as follows. The kinetics model
is derived in Sec. II and its connection to the hydro-
dynamic hot-spot model is discussed in Sec. III. In Sec
IV the non-Maxwellian solutions to the kinetic model are
presented and compared to previously used analytic dis-
tributions. The non-Maxwellian distributions produce
sizable corrections to the laser absorption rate, heat con-
duction rate, and electron-ion heat transfer rate. These
are calculated and their dependence on laser intensity is
investigated. Finally, implications of the results are dis-
cussed in Sec. V. For numerical expressions in this pa-
per, hybrid units are employed unless otherwise indicat-
ed: that is, CGS units are used for most quantities, tem-
perature and other energies are in eV, powers is in watts,
and laser wavelength is in micrometers.

I1I. THE KINETIC EQUATION

The model plasma consists of electrons with mass m,,
charge —e (e >0), and density n, and of ions with mass
m;, charge Ze, and density n;. The driving laser pulse
has frequency @ and period 27 /w=3.34A fs, where the
wavelength A is in micrometers. The laser pulse width 7,
for T® lasers can be of order 100 fs—10 ps. Because of
plasma oscillations, laser absorption is enhanced at the
critical surface, where the electron density is

n.=111X10"A"2 cm ™3 . (1)

The electron quiver motion in the laser field is
v(t)=vycoswt. If the laser intensity is I (in Wcm™?2),

then the peak electron quiver energy €, =4m L3is

€,=1.87X107 AT eV, @)
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which can be many times the thermal energy. Inverse-
bremsstrahlung heating is important when €,>7,. On
the other hand, the theory given here is only valid for
nonrelativistic electron energy I << 10”272 Wcm™2.

In a stationary plasma, the Boltzmann equation for the
electron distribution function f (v) (normalized to n,) has
the form

% vV +aV,f=Cy+Cyu @3)
with small-angle elastic collisions C,; described by a Lan-
dau collision term [13] and inelastic electron-ion col-
lisions represented by C;,.. The electron acceleration
a(t) comes solely from the laser pulse, although the
plasma-frequency resonance at the critical density will be
included later phenomenologically.

We employ a Cartesian-tensor expansion for the distri-
bution [13], retaining, as is commonly done, only the iso-
tropic and vector terms

FIV=Ffo0)+9-£,(v) . 4)

This approximation is often used even when the anisotro-
py is not very small [11,14]. Using the expansion, assum-
ing the ions to be in an isotropic Maxwellian distribution,
and neglecting the effect of electron-electron collisions on
f,(v), we obtain two coupled equations

fO 1 d 2 _

a +—V 3U2 EJ[U a'fl]—CFP‘f‘Ce,- y (5)
of, afo
—5;—+Veifl vao——a—a— . (6)

The Fokker-Planck elastic collision term Cgp and the
electron-ion elastic collision term C,; are taken from Ref.
[13]. The contribution of inelastic collisions is neglected
because of their comparatively weak effect on the distri-
bution function, even when inelastic energy losses are rel-
atively important [15,16]. Because of the neglect of in-
elastic collisions, all the terms in Eq. (5) manifestly con-
serve particle number. Energy is conserved only by the
Fokker-Planck term.

The isotropic distribution determines the average elec-
tron energy and so the temperature

2
T,= 3, f[%mevz]fo(v)d% . )
The thermal velocity is then defined to be
w=V2T,/m, . ®)

The frequency of elastic collisions between particles of
species a and b is

4rZ2Zzen,
——23——lnA s 9)
mjv

where v is the relative velocity and InA is the Coulomb
logarithm [13]. The distribution f relaxes to a Maxwel-
lian in roughly the time v_,'(v,,). The distribution f, is
determined largely by electron-ion collisions because
Vi /Vee =Z >>1. The characteristic time scale of the im-
portant plasma heating and cooling processes is the in-

’Vab(v)_
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verse electron-ion collision frequency. By convention,
this time is defined as 7, =3V7/4v,, (v, ) or

372

: S . (10)

=0.3440———*
Te (Zn, /10%)nA ©

We now introduce a dimensionless energy variable and
distribution function. Using dimensionless variables
makes the analysis of the distribution function more
transparent and increases computational power by not
binding the calculation of the distribution function to any
fixed energy grid. A normalized time variable is not used
because the relevant time scales (the collision times) vary
with density and temperature changes and normalization
results in no simplification. At any given time, however,
the contemporary collision time 7, can be used as a con-
venient time measure. Accordingly, we define

e=(v/vy ), (11)
fle)=wd /n,)fov), (12)

where the normalized distribution f(€) is distinguished
by its argument from the dimensional f,(v). The nor-
malized Maxwellian distribution f™(e) is given by

Me)= 31/2 exp(—e¢) . (13)
T

The invariant moments of the normalized distribution
function are, in terms of the density of states function
g.(e)=2me!"?,

fomf(e,t)ge(e)de=1 , (14)

fowf(e,t)ege(e)de-—“% . (15)

Because of the normalization, the distribution function
S (€) has no direct information about changes in density
or temperature. Lacking inelastic terms, the kinetic
equation cannot supply information on density changes;
however, the time evolution of the energy can be deter-
mined separately and self-consistently from the kinetic
equations.

The solution to Eq. (6) produces inverse-
bremsstrahlung [9] and heat conduction [17] terms in the
fo equation Eq. (5). These terms are obtained by separat-
ing f, into rapidly and slowly varying components, re-
spectively, and then averaging the heating from the rap-
idly varying component over a laser period. In terms of
the normalized variables, and after substituting for f,
from Eq. (6), the kinetic equation Eq. (5) becomes

.a_f________ 3/2 —
o0 T d veae'© )=CrtCp—Cy—C

cond *

(16)

The second term on the left-hand side of Eq. (16)
preserves the energy moment Eq. (15) of the time-
evolving distribution function. The Fokker-Planck
electron-electron collision term in dimensionless form is
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3\/77 4

FP— 4Zr. Ve [f( )f f(e)ede

2 af 13/2 g 1
+=9oL
39 de

+63/2f “fle)de

} . a1mn

The inverse-bremsstrahlung heating term is obtained
by averaging the work done by the laser electric field over
one period [9]:

Vo vi/vh 1 3 af
Cp=7r———e — & oL 18
8 Te V1—n/n, Ve e 8 )ae ’ (18)
where
1
=), (19)
g 1+(ey/€)?
— 1273
_ | 3Vn
€= 4o, (20)

The expression for Cyz includes a resonance factor
(1—n/n.)~'72, which comes from the coupling between
the laser and plasma oscillations at the critical surface
[18].

The electron-ion elastic collision term, which arises
from the ion contribution to C,; in Eq. (3), is [13]

Ti of

fle) T. 3

e

2n

where the function I (x) comes from the ion distribution
and ensures that C,; conserves particle number:

I{x)=P(x)—xP'(x) , (22)

I
Px)=—= [ dy . (23)

Although 1(0)=0, the large magnitude of m,;/m, allows
us to replace I (x) by I (e )=1 for most calculations.

The conduction cooling term derives from the V-f,
term in Eq. (5). Assuming there is no static current, it is
(17]

=_i . 4Te 2 572
Ccond 3V [3‘/7_7_”&6
(e3) f
><H3< & ac W
st g_;f
6(e?) de 2
XLVT
T , (24)

where
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(e’")s41rf0mf(e)e'”de. (25)

The density-gradient term in Eq. (24) vanishes for a
Mazxwellian distribution and we will omit it, assuming in
any event that temperature gradients are much more im-
portant on the short time scale.

III. THE HOT-SPOT MODEL

The hot-spot model [12] is a hydrodynamic model that
can be used to obtain rapid, physically accurate estimates
of the magnitudes of heating and cooling terms. In addi-
tion, applications of this model have included an exten-
sive treatment of atomic excitation and deexcitation col-
lisions and so could accurately determine the plasma elec-
tron density and the excited state populations [4]. In
principle, the hot-spot-model equations of motion for n,
and T, are derivable from the two lowest moments of the
fo kinetic equation. The kinetic model developed above
lacks inelastic collisions and so cannot determine the den-
sity variation, but, as we shall show, the hot-spot-model
energy equation is obtained by taking the energy moment
of the corresponding kinetic terms in Eq. (16). As with
most hydrodynamic models, the hot-spot energy terms
have been calculated with a Maxwellian distribution.
The kinetic theory presented here will allow these terms
to be generalized to non-Maxwellian plasmas.

The hot-spot-model energy equation is found by taking
the energy moment of Eq. (16), remembering that the
density and energy moments of the normalized distribu-
tion [Egs. (14) and (15)] are constant. The resultant equa-
tion for (1/T,)dT, /dt can be multiplied by p,=n,T, to
obtain an equation for the electron energy density
E=3n,T,:

oE ®
? =%neTef0 [Crp+CiB—Coi —Coonal
hot spot
Xeg.(e)de (26)
=S, — Q.i— Qs - 7

The integration of Cpp gives zero. The important physi-
cal processes are inverse bremsstrahlung S,, elastic col-
lisions with ions Q,;, and electron thermal conduction
Q. The terms omitted from Eq. (27) that have previous-
ly been included in the hot-spot model are inelastic col-
lisions and bremsstrahlung cooling. We have argued that
the former should not significantly alter the distribution
function and hot-spot energy calculations [4] have shown
that inelastic collisions are not a major factor in the early
time energy balance for this problem; a simple calculation
[19] shows that, for this problem, bremsstrahlung is many
orders of magnitude smaller than any other term, even at
high temperature.

, The magnitudes of the hot-spot energy terms are found
by carrying out the integrations in Eq. (26) for a Maxwel-
lian distribution. To obtain the usual inverse-
bremsstrahlung heating term [18], we use C;g from Eq.
(18), also assuming that €,=O0, so that g(e)=1. The re-
sult is
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2
ZInA A2l
T} \/1=n,/n,

The assumption that €,=0, or that the electron-ion col-
lision frequency is much less than the laser frequency, is
not always well satisfied in dense plasmas. Numerically,
this parameter is

ne

3.4X 10"

e

Wem™3 .  (28)

2/3

_173 ’ (29)

T,

e

e ZinA
n. A

€

which can approach one near critical density, especially
for highly charged plasmas. As we shall see, even a small
value of €, can reduce the heating rate.

Electron cooling from elastic collisions with ions can
be calculated by integrating C,; from Eq. (21) with a
Maxwellian distribution, according to Eq. (26), giving the
heat transfer rate [20]

3n, m,

Qei=—

Te Mm;

(T,—T;). (30
In the hot-spot model, this is the sole heating process for
the ions, so that the energy density in the ions changes as

9
ot

3

2aT.
2”! 1

=0, - 31

Conduction cooling is determined by spatial tempera-
ture (and density) gradients. These are approximated in
the hot-spot model by assuming that laser energy deposi-
tion occurs within a uniform stationary sphere of radius »
at the laser focus. The radius r is chosen to be compara-
ble to an average value of the inverse-bremsstrahlung ab-
sorption length [18]

B _ 1.11X10"%T32 /' 1—n, /n, o a2
abs Zn,InA n,/n, )

The heat flux from the hot spot is taken to be equal to its
average over the surface

1
V-qz——fAVV-qu= qt. (33)

In addition, the temperature gradient is assumed to have
a uniform scale length /,, so that we can write
1 1

—?VT,=— . (34)
T, L
Conduction losses due to the temperature gradient can
thus be written in terms of the parameters r and /,. If we
omit terms proportional to Vn,, the heat conduction
term in Eq. (24) becomes

2
4Te Vin 5,2

3
Ccond=—mrle [%:2;‘5 %g—%f .
(35)
The local heat flow is conventionally expressed as
0,=V-[k,VT,], (36)
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where k, is the thermal conductivity. Taking the energy
moment of C,,4 as prescribed in Eq. (26), we obtain the
standard [17,20] expression for the heat conductivity of
an equilibrium Lorentz plasma

_ 128 n.T,7,

3 m (37)

Ke
e

The expression for the temperature-gradient heat flow in
a Lorentz plasma is then

_3.95x10° I.”
rl, Z InA

0, Wem 2. (38)
The effect of a non-Maxwellian distribution on heat con-
duction will be expressed through the resultant
modification of k,. Conduction cooling becomes rapidly
(and anomalously) more important as the electron tem-
perature increases and so the conduction term is usually
limited [4] to some fraction of the free-streaming heat
flow n,v,, T,. This flux-limiting procedure was not need-
ed, however, for the calculations presented in this paper.

In this paper, our procedure for solving Eq. (16) is to
treat the fluid quantities n,,T,, and T; as time-dependent
parameters whose values are imported from the calcula-
tions described in Ref. [4]. This procedure allows us to
determine the resultant time-dependent non-Maxwellian
distributions and the magnitude of the modifications to
heating and cooling rates that they engender as a first
step in an iterative procedure. As we shall show, com-
pensating reductions in heating and cooling terms that
are produced by these non-Maxwellian distributions limit
the magnitude of the changes these terms produce in T,.
Thus it appears that the iteration of hydrodynamic and
kinetic equations initiated here should converge fairly
rapidly to a self-consistent solution of the full set of mod-
el equations.

The time dependence of n, is determined in Ref. [4] by
solving a self-consistently coupled set of rate equations
for the available states [12]. The atomic states in the
model have population N, defined such that

n=Z,N, .
I

Ionization, recombination, excitation, and deexcitation
cause transitions between states u and v during the pulse,
at the rates [4] W, (n,,T,), so that

dn,
dt

=>W.N, .

v

The net change in total internal energy is
d
EzEuNy:Qi—Ri > (39)
I

where Q; is the net collisional excitation rate from elec-
trons and R; is the rate of energy loss by line and radia-
tive recombination processes. Because of the absence of
these terms from Eq. (27), both radiation losses and the
buildup of 3 ,E, N, are neglected in our kinetic equation.
The calculations of Ref. [4] show this to be a second-
order omission.
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The non-Maxwellian distributions generated during the
laser pulse produce different heating and cooling rates
from those of S,,Q,;, and Q,. Using the kinetic model,
we can calculate corrections to these rates. If the
Maxwellian rates are factored out of the collision terms,
they become

CIBE(Se/pe )C?B 5 (40)
Cei E(Qei /pe )Ceoz ’ (41)
CcondE(Qh /pe )Cgond 5 (42)
which defines
Vo 1 9 df
ct=—"r — — =L
B~ 72 V% ae g(f)ae , (43)
cO— Vr 1 3 Pl T,f(€)+T;of /3¢
ei 2 \/_6 de m, € T,-“Te ,
(44)
v 5(e) af 3
CO =—"11¢5 N A 45
cond 48 6<€2> aG 2f ( )

Integrations over these quantities define non-Maxwellian
correction factors apg, «,, and «a; to the inverse-
Bremsstrahlung absorption rate, the electron-ion transfer
rate, and the heat conductivity, respectively, e.g.,

aplt)= fO“C?Bw,t)ege(e)de . (46)

For Maxwellian distributions, a;z=a, =a, =1. Using
these correction factors, we can rewrite the hot-spot-
model energy balance equation Eq. (27) with an arbitrary
electron distribution as

dE

dr =apS, =, Qi — Q- 47

lhot spot

IV. RESULTS

The a correction factors derived above can be evalu-
ated analytically for a family of distribution functions
that are frequently used to approximate non-Maxwellian
distributions in long-pulse laser-heated plasmas. These
functions have the form [9,21]

a, —ie/e, )"?
m(€)=—7>e " , (48)
f Ef,,/z

where
m
= 49)

I 42T (3/m) ° (
. =3I‘(3/m) . (50)
mo 2I(5/m)

The function f,(€) is a Maxwellian, an exact solution to
the equation Cpp=0. The function fs(€) is an exact
self-similar solution to Eq. (16) with C;p the sole source
term, if it is assumed that €,=0 and that the laser intensi-
ty is constant [9]. More generally, f,,(€), with2<m =5,
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can be a good approximation to the distributions calcu-
lated from Eq. (16) if the important source terms are Cgp
and Cg. In this case, the value of m can be phenomeno-
logically determined [22] from the laser intensity and
electron temperature. For the short-pulse problem con-
sidered here, the f,, (€) functions are not as good an ap-
proximation to the electron distribution because of the
picosecond time scale, the importance of the conduction
term, and the fact that €, is not always negligible.

The f,,(¢€) distributions can be used to obtain analytic
expressions for the non-Maxwellian a correction factors.
These expressions, with m related to the laser intensity as
in Ref. [22], can then be compared with the correction
factors derived from solutions to Eq. (16) to assess the
utility of using the f,,(€) as approximate distributions for
short-pulse heated plasmas. Taking f(€) to be given by
fm(€) in Eqgs. (43)-(45) produces the following correction
factors for the inverse-bremsstrahlung heating rate, the
elastic electron-ion heat transfer rate, and the conduction
cooling rate:

m Am  —(gy/1.26¢,,)"

a%B )zﬂ3/2 63';2 e 0 ¢ ’ (51)
m
a, T,[2¢,/m](2/m)—T;

a(e;n)=ﬂ'3/2 3};2 e[ m ] 1 , (52)
em Te——Ti

Z 10 T(8/m)>
(m) —
=T " | LP(10/m)—— =
* 96 TG/m |20 ™ T Fem |- P

In the expression for a{3’, valid for small €,, the initial
factor gives the modification to the inverse-
bremsstrahlung heating rate due to the non-Maxwellian
distribution f,,(€), while the exponential factor approxi-
mates the reduction in heating rate when €,>0 (high
electron density, low temperature). Inverse-
bremsstrahlung heating is always reduced by these non-
Maxwellian distributions, as was shown by Langdon [9].
As m increases from 2 to 5, aﬁg) monotonically decreases
to about 0.4. The electron-ion factor al is generally
slightly less than one, except when the electron and ion
temperatures are nearly equal. When T, <57, the non-
Maxwellian distribution enhances electron-ion coupling,
reflecting the fact that heat can flow from non-
Maxwellian electrons to Maxwellian ions even when they
are at the same temperature. The electron-ion transfer
rate is quite small in this case, however, even though the
factor a,; may be very large for T; =~ T,. Finally, the con-
duction cooling rate can be significantly reduced with
these non-Maxwellian distributions: a, monotonically de-
clines with increasing m to a minimum of about 0.25
when m =5. These results have been obtained and dis-
cussed by Mora and Yahi [23], who derived an expression
equivalent to Eq. (53).

To calculate the distribution functions arising under
strong short-pulse laser heating, we numerically solved
the Fokker-Planck equation Eq. (16), using a time-
dependent, implicit scheme. Energy conservation by the
Fokker-Planck term Cgp was checked with a predictor-
corrector iteration to ensure proper energy balance. In
the remainder of this section, we will first discuss the
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time dependence of the electron distribution and its
consequences and then show how these results vary with
laser intensity. The latter discussion is relevant to x-ray
laser gain calculations reported earlier [4]: The laser in-
tensities chosen here are the same as those used in Ref.
[4], so a direct connection may be made with this work.

As in Ref. [4], our calculations involve a preformed
selenium plasma irradiated by a KrF laser pulse
(A=0.248 um), with a Gaussian shape and a full width
1/e maximum pulse width of 2 ps. Eight calculations
corresponding to eight different peak laser intensities
were carried out. These intensities are listed in Table I.
The electron distribution was assumed initially in a
Maxwellian equilibrium at about 10 eV, with an ion den-
sity of 6X10% cm™3; this ion density is such that, after
heating for the duration of the pulse, the electron density
is close to, but remains less than, the critical density
n.=1.8X102cm™3,

The Gaussian laser pulse profile used in these calcula-
tions is shown in Fig. 1. An identical profile was used in
all runs, with the peak at 3 ps and the magnitude of the
peak varying. The distribution function evolution for
heating with a peak intensity of 3.2X10'® Wcem™3 is
shown in Fig. 2, where we have plotted the calculated
distribution relative to a Maxwellian:

y(t)=f(e,t)/fMe) . (54)

Like the f,, distributions, the calculated distribution tail
is depleted as the laser pulse intensifies and m corre-
spondingly increases, and is repopulated when the pulse
ends.

The effect of the non-Maxwellian distribution on the
plasma hydrodynamics is shown in Figs. 3, 4, and 5,
where the correction factors a;g, a,;, and a,, respective-
ly, are plotted as solid lines for the case of peak intensity
3.2X10'®* Wem ™2, In these figures, the dotted lines are
the correction factors for the distribution f,,(€), obtained
from Egs. (51)-(53), with m given by the formula of Ala-
terre, Matte, and Lamoureaux [22]. The value of m as a
function of time for each of the peak intensities in Table I
is shown as a family of curves in Fig. 6. The calculated
distributions produce inverse-bremsstrahlung heating
rates and conduction cooling rates significantly different
from both Maxwellian and f,, (€) distributions, while the
electron-ion transfer rate is close to its Maxwellian value.
The discrepancy between the f,, distribution and the
actual-distribution curves largely reflects the transient
nature of the plasma response and shows the importance

TABLE I. Peak laser intensities.

Case Peak intensity (Wcm™2)

4.9x10"
9.9 10'*
2.0X10"
3.9X 10"
7.9X 10"
1.6X 10"
3.2x10'
6.3 10
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FIG. 1. The (Gaussian) laser pulse profile as a function of
time. The peak intensity, but not the pulse shape, varies for the
different examples used in the paper.

of obtaining the actual distribution.

A significant additional effect in dense or turbulent
plasmas is the modification in the inverse-bremsstrahlung
heating rate when the electron-ion collision frequency is
comparable to the laser frequency. This modification
enters the calculation as a finite value of €, and its effect

20— L e e e
18 ]
16f ]
14
12
LOw

0.8

Normalized Distribution

0.6
04

0.2

0o 1 2 3 4 5 6 7 8 9 10
Energy [thermal units]

FIG. 2. The electron distribution function shape at different
times. The curves are snapshots at time 1 fs and 3, 4, 5, 6, and
10 ps, as marked. The peak laser intensity was 3.2X10'
Wem ™3, reached at 3 ps. The abscissa is the normalized energy
variable € and the ordinate is v, the ratio of the distribution to a
Maxwellian distribution.

FIG. 3. The correction factor a;p for inverse-bremsstrahlung
heating rate as a function of time for the numerically deter-
mined distribution (solid line) and the equivalent self-similar
distribution f, (€), with m as shown in Fig. 6 (dotted line). The
peak laser intensity was 3.2X 10'® Wem ™2 The solid line is the
ratio of the actual heating rate, with €, nonzero (cf. Fig. 7), to
the classical rate in Eq. (28), which assumes €,=0. The dashed
line shows the correction factor attributed solely to the non-
Maxwellian distribution; for this curve the nonzero €, was used
to compute the Maxwellian heating rate in the denominator.
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FIG. 4. The correction factor a, for conduction cooling as a
function of time for the numerically determined distribution
(solid line) and the equivalent self-similar distribution f,,(€),
with m as shown in Fig. 6 (dotted line). The peak laser intensi-
ty was 3.2X 10" Wem ™2,
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FIG. 5. The correction factor «,; for electron-ion energy ex-
change as a function of time for the numerically determined dis-
tribution (solid line) and the equivalent self-similar distribution
fm(€), with m as shown in Fig. 6 (dotted line). The peak laser
intensity was 3.2X 10" Wcm ™2,

on the heating rate of the f,,(e) distribution is approxi-
mated by the exponential factor in Eq. (51); similar
corrections will occur with other distributions. The
correction factor shown by the solid line in Fig. 3 in-
cludes the €,70 modification as well as the effect of the

4.8—- 4
4.6—— .
‘LQ_— N
4.2_— :
4.0_—

3.8+

3.4

Index m

3.2

3.0

2.8

~N
-
T T T T T T T

o

time [ps]

FIG. 6. The value of m, which gives the best-fit f,,(€) distri-
bution for the current laser intensity and electron temperature,
from the formula of Alaterre, Matte, and Lamoureaux [22].
The values are plotted as a function of time for each of the runs
with peak intensities given in Table I. The lowest curve is for
the lowest peak intensity (case 1) and each higher curve corre-
sponds to a higher peak intensity.
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non-Maxwellian distribution. To isolate the effect of the
distribution alone on the heating rate, one can calculate
the nonzero €, modification alf to the Maxwellian rate
Eq. (28) by substituting f*(¢) in Eqgs. (43) and (46). Di-
viding a5 by o gives the correction due solely to the
distribution function, which is shown in Fig. 3 as a
dashed line. This latter correction approaches one at the
initial time, but the solid line correction, including also
the effect of finite €;, gives a more accurate heating rate.
The assumption that €, is small underlies the derivation
of Cyg, since it must be true that €,<1 in order to time
average the heating term after solving Eq. (6). This con-
dition is not violated in our calculation, but finite €,
effects are important. As Eq. (29) shows, the value of ¢,
is proportional for fixed ion density to Z*/>T,"!; the actu-
al values of €, are plotted in Fig. 7 as a family of curves
for each of the intensities given in Table I.

The importance of non-Maxwellian effects as a func-
tion of laser intensity can be seen in Figs. 8 and 9, where
the calculated correction factors are plotted for each of
the intensities given in Table I. The inverse-
bremsstrahlung heating rate and conduction cooling rate
are both increasingly limited by the distribution as laser
intensity increases. These effects compensate to some de-
gree in the plasma energy balance and the net effect of
non-Maxwellian distributions is to change the local plas-
ma energetics more than the local temperature history.
This is seen in Fig. 10, which is a plot of the plasma tem-
perature as a function of time, determined by the hydro-
dynamic hot-spot model [4] of Eq. (47), with correction
factors either set to unity (Maxwellian distribution) or to
the time-varying values determined by this work. The
temperature of the non-Maxwellian plasma is somewhat

0.4 ——T——T T T T T
0.90 .
0.35 F .
0.30f 3
0.5 3
(=] - -
O r ]
0.20 F .
oasf .
0.10 F .
0.05 & 3
0 PR TR TS SR S S SN S NS SR R SR
o 1 2 3 4 S 6 7 8 9 10 11

time [ps]

FIG. 7. The actual values of €,=(3V7/4w7,)*”* as a func-
tion of time, a separate curve for each of the intensities given in
Table I. The highest curve corresponds to the lowest peak in-
tensity (case 1) and successively lower curves correspond to
higher peak intensities.
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FIG. 8. The calculated correction factors a;z for inverse-
bremsstrahlung heating rate as a function of time for each of the
intensities given in Table I.

higher than the Maxwellian one. The laser energy depo-
sition was much smaller in the non-Maxwellian plasma,
which may have important experimental consequences:
570 J/ug of laser energy was deposited in the uncorrected
calculation, but only 348 J/ug was deposited in the
corrected calculation.

In addition to its effect on the heating rates, the shape
of the distribution function will be important in deter-
mining radiative output from the plasma. In short-pulse
heating, ionization is delayed relative to the laser pulse,
resulting in population inversions and possible amplified
spontaneous emission that is similarly delayed. Thus the
distribution shape after the pulse, during the generation
of radiation, could be particularly important. In the hy-
drodynamic calculations of Ref. [4], for example, the

Qp

o

FIG. 9. The calculated correction factors a, for conduction
cooling as a function of time for each of the intensities given in
Table 1.
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0.0 2.0 4.0 6.0 8.0 10.0

FIG. 10. The electron and ion temperatures as a function of
time, as computed with the hydrodynamic hot-spot model [4],
using Maxwellian heating and cooling rates (solid line) and us-
ing the correction factors computed here (dotted line).

peak of the laser pulse occurred at 3 ps, but the selenium
plasma was not ionized into the L shell until 4 ps and the
gain coefficient due to the resulting population inversions
peaked in value at 5.5 ps. With the depleted-tail distribu-
tions produced by laser heating, the time to collisionally
ionize the plasma could be further delayed. To illustrate
both the maximum extent of deviation from a Maxwelli-
an and the post-pulse relaxation towards a Maxwellian,
we show calculated electron distribution functions for
each of the peak laser intensities in Table I, at two times
of particular interest for the x-ray laser gain calculations
of Ref. [4]. In Fig. 11, the electron distributions are
shown at 3 ps, the time of peak intensity. At this time,
the plasma has shown significant heating and ionization
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FIG. 11. The electron distribution as a function of energy, at
3 ps, the time of peak laser intensity. The abscissa is the elec-
tron energy in eV (log scale) and the ordinate is the ratio of the
actual distribution to a Maxwellian.
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FIG. 12. The electron distribution as a function of energy, at
5.5 ps, when the maximum gain is predicted in Ref. [4]. The
abscissa is the electron energy in eV (log scale) and the ordinate
is the ratio of the actual distribution to a Maxwellian.

and the distribution is strongly non-Maxwellian. In Fig.
12 the same set of electron distributions are shown at 5.5
ps, the time when maximum gain is predicted. While
some relaxation of the distributions towards a Maxwelli-
an has occurred, the deviations appear to be large enough
to have a measurable effect on the gain calculations.

V. CONCLUSIONS

We have formulated a kinetic description of plasma
heating by short-pulse, high-power lasers and used it to
calculate modifications to the local plasma heating and
heat flow that result from the generation of non-
Maxwellian electron distributions. The distributions are
driven to be non-Maxwellian primarily by strong
inverse-bremsstrahlung heating (such that Ze /T, >>1
during most of the pulse) and conduction cooling (which
is initially small, but grows in importance as 7.)/?). Plas-
ma heating initially occurs on a subpicosecond time scale
for all peak intensities in Table I, so that electron temper-
atures of several hundred eV are attained within 2 ps (see
Fig. 10); at these temperatures, even at critical density,
the collisional times (e.g., 7,) characteristic of the distri-
bution function response to heating and cooling, or to
collisional relaxation, are greater than the laser-pulse
width. Thus the short-pulse generated distributions
should be quite different from those found in strong
long-pulse heating.

Non-Maxwellian distributions measurably alter the
plasma heating and cooling terms. The principal effect is
on the thermal conductivity, which is reduced for the
highest laser intensity in Table I to as low as one-quarter
its Maxwellian value. The inverse-bremsstrahlung heat-
ing rate is also reduced to as low as one-half its Maxwelli-
an value for the highest-intensity case. The overall result
of the non-Maxwellian distributions is to produce some-
what hotter electrons than predicted by the Maxwellian
hydrodynamics. Non-Maxwellian generation acts like a
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flux limiter for laser heating and reduces the require-
ments on the laser-pulse energy needed to heat a plasma
to a given temperature.

The ion heating rate from elastic collisions is only
slightly reduced or enhanced, by up to about 10%. This
is potentially good diagnostics news, since the observa-
tion of unexpectedly high ion temperatures (and large
Doppler linewidths) in short-pulse heating experiments
might therefore be attributable to the presence of ion-
acoustic microturbulence at the critical surface that is
generated by the laser absorption processes [24].

We have compared the calculated distributions from
our model with the functions f,,(€) that have been used
in the past to model laser-heated electron distributions,
with m determined from laser intensity and electron tem-
perature as specified in Ref. [22]. Using the modifications
to heating and cooling rates as the criterion, we find that
the f,, distributions with these values of m do not give
accurate values of these rates in the short-pulse cases
considered. This is due to the short time scales and high
densities in the present problem: the short time scale
gives the distribution little time to equilibrate or ap-
proach self-similar behavior, while the high electron-ion
collision frequency effectively shifts the focus of the laser
heating so the lowest-energy electrons are not the most
rapidly heated. Microturbulence, if present, would in-
crease the effective collisionality [24] and further alter
the distribution.

The kinetic model presented here is well integrated
with the hot-spot hydrodynamic model and the hot-spot
calculations of Ref. [4] were used to determine the elec-
tron density and temperature variations required in the
kinetics calculations. This procedure allowed us to ac-
count for inelastic processes without explicitly including
them in the kinetic model. In principle, Eq. (16) should
be solved self-consistently with Eq. (47) or, more
rigorously, with the complete hot-spot equations of Ref.
[4], including the inelastic terms in the rate equations.
Because of the difficulty of simultaneously solving the hy-
drodynamic and kinetic equations, our approach here
was to initiate an iterative solution, which our results
suggest should converge after a small number of itera-
tions. Thus the solutions in this paper to Eq. (16) are
based on the Maxwellian-distribution calculations de-
scribed in Ref. [4]. When the a correction factors of
Figs. 3-5 are incorporated through Eq. (47), then the
hot-spot-model equations of Ref. [4] will change accord-
ing to the calculations described in this paper. These
changes to the hydrodynamics calculations are evident in
the hotter “corrected” temperature curve in Fig. 10.
Note also that the collisional excitation and ionization
rates used in the rate equations will be changed by the
non-Maxwellian distributions.

The recent observation of neonlike x-ray spectra from
experiments [25] using 35 mJ, 1 ps KrF pulses to heat
copper plasmas have provided some experimental sup-
port for the basic ionization predictions of the model cal-
culations of Ref. [4], which were used to drive our kinet-
ics calculations. Radiation measurements [8], e.g., of sa-
tellite lines, will be needed to experimentally investigate
the predictions made here about the evolution of the dis-
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tribution function and its dependence on the peak intensi-
ty of the laser pulse.

Our kinetics model employed a local description of
heat transport and ignored nonlocal effects. In short gra-
dient length plasmas, nonlocal transport can also be im-
portant in determining the distribution function at each
point, and our kinetic model could be readily extended to
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study nonlocal transport along the same lines others have
followed [14,26].
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